129 resultados para Cells, Cultured

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retinoids, vitamin A (retinol) and its metabolic derivatives, are required for normal vertebrate development. In murine embryonic stem (ES) cells, which remain undifferentiated when cultured in the presence of LIF (leukemia inhibitory factor), little metabolism of exogenously added retinol takes place. After LIF removal, ES cells metabolize exogenously added retinol to 4-hydroxyretinol and 4-oxoretinol and concomitantly differentiate. The conversion of retinol to 4-oxoretinol is a high-capacity reaction because most of the exogenous retinol is metabolized rapidly, even when cells are exposed to physiological (≈1 μM) concentrations of retinol in the medium. No retinoic acid or 4-oxoRA synthesis from retinol was detected in ES cells cultured with or without LIF. The cytochrome P450 enzyme CYP26 (retinoic acid hydroxylase) is responsible for the metabolism of retinol to 4-oxoretinol, and CYP26 mRNA is greatly induced (>15-fold) after LIF removal. Concomitant with the expression of CYP26, differentiating ES cells grown in the absence of LIF activate the expression of the differentiation marker gene FGF-5 whereas the expression of the stem cell marker gene FGF-4 decreases. The strong correlation between the production of polar metabolites of retinol and the differentiation of ES cells upon removal of LIF suggests that one important action of LIF in these cells is to prevent retinol metabolism to biologically active, polar metabolites such as 4-oxoretinol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stimulation of naive T cells by antigen-presenting cells (APC) is thought to involve two qualitatively different signals: signal one results from T-cell receptor (TCR) recognition of antigenic peptides bound to major histocompatibility complex (MHC) molecules, whereas signal two reflects contact with one or more costimulatory molecules. The requirements for stimulating naive T cells were studied with MHC class I-restricted CD8+ T cells from a T-cell receptor transgenic line, with defined peptides as antigen and transfected Drosophila cells as APC. Three main findings are reported. First, stimulation of naive T cells via signal one alone (MHC plus peptide) was essentially nonimmunogenic; thus T cells cultured with peptides presented by MHC class I-transfected Drosophila APC lacking costimulatory molecules showed little or no change in their surface phenotype. Second, cotransfection of two costimulatory molecules, B7-1 and intercellular adhesion molecule 1 (ICAM-1), converted class I+ Drosophila cells to potent APC capable of inducing strong T-proliferative responses and cytokine (interleukin 2) production. Third, B7-1 and ICAM-1 acted synergistically, indicating that signal two is complex; synergy between B7-1 and ICAM-1 varied from moderate to extreme and was influenced by both the dose and affinity of the peptide used and the parameter of T-cell activation studied. Transfected Drosophila cells are thus a useful tool for examining the minimal APC requirements for naive T cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cells of most tissues require adhesion to a surface to grow. However, for hematopoietic cells, both stimulation and inhibition of proliferation by adhesion to extracellular matrix components have been described. Furthermore, it has been suggested that progenitor cells from chronic myelogenous leukemia show decreased β1 integrin-mediated adhesion to fibronectin, resulting in increased proliferation and abnormal trafficking. However, we show here that the chronic myelogenous leukemia-specific fusion protein p210bcr/abl stimulates the expression of α5β1 integrins and induces adhesion to fibronectin when expressed in the myeloid cell line 32D. Moreover, proliferation of both p210bcr/abl-transfected 32D (32Dp210) cells and untransfected 32D cells is stimulated by immobilized fibronectin. Cell cycle analysis revealed that nonadherent 32D and 32Dp210 cells are arrested in late G1 or early S phase, whereas the adherent fractions continue cycling. Although both adherent and nonadherent p210bcr/abl-transfected and parental 32D cells express equal amounts of cyclin A, a protein necessary for cell cycle progression at the G1/S boundary, cyclin A complexes immunoprecipitated from 32D cells cultured on immobilized fibronectin were found to be catalytically inactive in nonadherent but not in adherent cells. In addition, as compared with untransfected 32D cells, cyclin A immunoprecipitates from 32Dp210 cells exhibited a greatly elevated kinase activity and remained partially active irrespective of the adhesion status. The lack of cyclin A/cyclin-dependent kinase (CDK) 2 activity in nonadherent 32D cells appeared to result from increased expression and cyclin A complex formation of the CDK inhibitor p27Kip1. Taken together, our results indicate that adhesion stimulates cell cycle progression of hematopoietic cells by down-regulation of p27Kip1, resulting in activation of cyclin A/CDK2 complexes and subsequent transition through the G1/S adhesion checkpoint.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Osteoclastogenesis is a complex process that is facilitated by bone marrow stromal cells (SCs). To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting. This procedure yields a population of CD34+ cells that does not contain SC precursors, as assessed by the lack of expression of the SC antigen Stro-1, and that differentiates only into hematopoietic cells. We found that CD34+, Stro-1- cells cultured with a combination of granulocyte/macrophage colony-stimulating factor, interleukin 1, and interleukin 3 generated cells that fulfill current criteria for the characterization of OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of the calcitonin and vitronectin receptors and of pp60c-src tyrosine kinase. These OCs also expressed mRNA for the noninserted isoform of the calcitonin receptor and excavated characteristic resorption pits in devitalized bone slices. These data demonstrate that accessory SCs are not essential for human osteoclastogenesis and that granulocyte colony-stimulating factor treatment mobilizes OC precursors into the peripheral circulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kidneys of patients with autosomal dominant polycystic kidney disease become massively enlarged due to the progressive expansion of myriad fluid-filled cysts. The epithelial cells that line the cyst walls are responsible for secreting the cyst fluid, but the mechanism through which this secretion occurs is not well established. Recent studies suggest that renal cyst epithelial cells actively secrete Cl across their apical membranes, which in turn drives the transepithelial movement of Na and water. The characteristics of this secretory flux suggest that it is dependent upon the participation of an apical cystic fibrosis transmembrane conductance regulator (CFTR)-like Cl channel and basolateral Na,K-ATPase. To test this hypothesis, we have immunolocalized the CFTR and Na,K-ATPase proteins in intact cysts and in cyst epithelial cells cultured in vitro on permeable filter supports. In both settings, cyst epithelial cells were found to possess Na,K-ATPase exclusively at their basolateral surfaces; apical labeling was not detected. The CFTR protein was present at the apical surfaces of cyst epithelial cells that had been stimulated to secrete through incubation in forskolin. CFTR was detected in intracellular structures in cultured cyst epithelial cells that had not received the forskolin treatment. These results demonstrate that the renal epithelial cells that line cysts in autosomal dominant polycystic kidney disease express transport systems with the appropriate polarity to mediate active Cl and fluid secretion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rad51 is a highly conserved eukaryotic homolog of the prokaryotic recombination protein RecA, which has been shown to function in both recombinational repair of DNA damage and meiotic recombination in yeast. In primary murine B cells cultured with lipopolysaccharide (LPS) to stimulate heavy chain class switch recombination, Rad51 protein levels are dramatically induced. Immunofluorescent microscopy shows that anti-Rad51 antibodies stain foci that are localized within the nuclei of switching B cells. Immunohistochemical analysis of splenic sections shows that clusters of cells that stain brightly with anti-Rad51 antibodies are evident within several days after primary immunization and that Rad51 staining in vivo is confined to B cells that are switching from expression of IgM to IgG antibodies. Following switch recombination, B cells populate splenic germinal centers, where somatic hypermutation and clonal proliferation occur. Germinal center B cells are not stained by anti-Rad51 antibodies. Rad51 expression is therefore not coincident with somatic hypermutation, nor does Rad51 expression correlate simply with cell proliferation. These data suggest that Rad51, or a highly related member of the conserved RecA family, may function in class switch recombination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Infantile Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase, a glycogen-degrading lysosomal enzyme. We constructed a plasmid containing a 5'-shortened human acid alpha-glucosidase cDNA driven by the cytomegalovirus promoter, as well as the aminoglycoside phosphotransferase and dihydrofolate reductase genes. Following transfection in dihydrofolate reductase-deficient Chinese hamster ovary cells, selection with Geneticin, and amplification with methotrexate, a cell line producing high levels of the alpha-glucosidase was established. In 48 hr, the cells cultured in Iscove's medium with 5 mM butyrate secreted 110-kDa precursor enzyme that accumulated to 91 micrograms.ml-1 in the medium (activity, > 22.6 mumol.hr-1.ml-1). This enzyme has a pH optimum similar to that of the mature form, but a lower Vmax and Km for 4-methylumbelliferyl-alpha-D-glucoside. It is efficiently taken up by fibroblasts from Pompe patients, restoring normal levels of acid alpha-glucosidase and glycogen. The uptake is blocked by mannose 6-phosphate. Following intravenous injection, high enzyme levels are seen in heart and liver. An efficient production system now exists for recombinant human acid alpha-glucosidase targeted to heart and capable of correcting fibroblasts from patients with Pompe disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant transformation. By contrast, the role of replicative senescence in organismic aging is controversial. Studies on cells cultured from donors of different ages, genetic backgrounds, or species suggest that senescence occurs in vivo and that organismic lifespan and cell replicative lifespan are under common genetic control. However, senescent cells cannot be distinguished from quiescent or terminally differentiated cells in tissues. Thus, evidence that senescent cells exist and accumulate with age in vivo is lacking. We show that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture. This marker was expressed by senescent, but not presenescent, fibroblasts and keratinocytes but was absent from quiescent fibroblasts and terminally differentiated keratinocytes. It was also absent from immortal cells but was induced by genetic manipulations that reversed immortality. In skin samples from human donors of different age, there was an age-dependent increase in this marker in dermal fibroblasts and epidermal keratinocytes. This marker provides in situ evidence that senescent cells may exist and accumulate with age in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expression of the cell adhesion molecules ICAM-1, ICAM-2, and VCAM-1 and the secretion of the cytokine interleukin 6 have been measured in mouse Sertoli cells cultured in vitro. Cytometric analysis revealed that, in basal conditions, low levels of ICAM-1 and VCAM-1 were present on the surface of the cells, whereas treatment with interleukin 1, tumor necrosis factor alpha, lipopolysaccharide, or interferon gamma induced, with different kinetics, increases in their expression. ICAM-2 was not detectable in basal conditions, nor was it inducible. Electron microscopic analysis and binding experiments using 51Cr-labeled lymphocytes demonstrated that increased expression of ICAM-1 and VCAM-1 on the surface of Sertoli cells, induced by inflammatory mediators, determines an augmented adhesion between the two cell types. The same stimuli, with the exception of interferon gamma, produced a rapid and remarkable increment of interleukin 6 production by Sertoli cells. These results suggest the presence of both direct and paracrine mechanisms of interaction between Sertoli and immune-competent cells, possibly involved in the control of immune reactions in the testis. Such mechanisms are of interest for the understanding of autoimmune pathologies of the testis and, if confirmed in humans, they could be involved in the sexual transmission of human immunodeficiency virus infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human diploid fibroblast cells cease growth in culture after a finite number of population doublings. To address the cause of growth cessation in senescent IMR-90 human fibroblast cells, we determined the level of oxidative DNA damage by using 8-oxoguanine excised from DNA and 8-oxo-2'-deoxyguanosine in DNA as markers. Senescent cells excise from DNA four times more 8-oxoguanine per day than do early-passage young cells. The steady-state level of 8-oxo-2'-deoxyguanosine in DNA is approximately 35% higher in senescent cells than in young cells. Measurement of protein carbonyls shows that senescent cells did not appear to have elevated protein oxidation. To reduce the level of oxidative damage, we cultured cells under a more physiological O2 concentration (3%) and compared the replicative life span to the cells cultured at the O2 concentration of air (20%). We found that cells grown under 3% O2 achieved 50% more population doublings during their lifetime. Such an extension of life span resulted from the delayed onset of senescence and elevation of growth rate and saturation density of cells at all passages. The spin-trapping agent alpha-phenyl-t-butyl nitrone (PBN), which can act as an antioxidant, also effectively delayed senescence and rejuvenated near senescent cells. The effect is dose-dependent and is most pronounced for cells at the stage just before entry into senescence. Our data support the hypothesis that oxidative DNA damage contributes to replicative cessation in human diploid fibroblast cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nature of an L-arginine-derived relaxing factor released from vascular smooth muscle cells cultured on microcarrier beads and stimulated for 20 h with interleukin 1 beta was investigated. Unlike the unstable relaxation elicited by authentic nitric oxide (NO) in a cascade superfusion bioassay system, the effluate from vascular smooth muscle cells induced a stable relaxation that was susceptible to inhibition by oxyhemoglobin. Three putative endogenous NO carriers mimicked this stable relaxing effect: S-nitroso-L-cysteine, low molecular weight dinitrosyl-iron complexes (DNICs), and the adduct of NG-hydroxy-L-arginine (HOArg) with NO. Inactivation of S-nitroso-L-cysteine by Hg2+ ions or trapping of DNICs with agarose-bound bovine serum albumin abolished their relaxing effects, whereas that of the vascular smooth muscle cell effluate remained unaffected. In addition, neither S-nitrosothiols nor DNICs were detectable in the effluate from these cells, as judged by UV and electron spin resonance (ESR) spectroscopy. The HOArg-NO adduct was instantaneously generated upon reaction of HOArg with authentic NO under bioassay conditions. Its pharmacological profile was indistinguishable from that of the vascular smooth muscle cell effluate, as judged by comparative bioassay with different vascular and nonvascular smooth muscle preparations. Moreover, up to 100 nM HOArg was detected in the effluate from interleukin 1 beta-stimulated vascular smooth muscle cells, suggesting that sufficient amounts of HOArg are released from these cells to spontaneously generate the HOArg-NO adduct. This intercellular NO carrier probably accounts for the stable L-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells and also from other NO-producing cells, such as macrophages and neutrophils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lactacystin, a microbial metabolite that inhibits protease activity only in the proteasome, was used to study the role of the proteasome in the activation-induced cell death (AICD) of T cells. Lactacystin induces DNA fragmentation and apoptosis in a T cell hybridoma (DO.11.10) in a dose-dependent manner. Between 1 and 10 μM, the mildly cytotoxic lactacystin inhibited the AICD of DO.11.10 cells cultured in anti-CD3-coated wells. Degradation of IκBβ and the translocation of the NF-κB (p50/RelA) into the nucleus, which occurred at 1.5 hr after anti-CD3 activation, were inhibited by lactacystin. Lactacystin did not inhibit the expression of nuclear transcription factor Oct-1. The activation-induced expression of the immediate–early gene, Nur77, and the T cell death genes, CD95 (Fas) and CD95 ligand (FasL), were inhibited. Functional expression of FasL cytotoxicity and the increase of cell surface Fas were also inhibited. Lactacystin must be added within 2 hr of activation to efficiently block AICD. In addition, lactacystin failed to inhibit the killing of DO.11.10 by FasL-expressing allo-specific cytotoxic effector cells. These observations strongly suggest a direct link between the proteasome-dependent degradation of IκBβ and the AICD that occurs through activation of the FasL gene and up-regulation of the Fas gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various cancers in vivo. This effect is thought to be exerted through suppression of the pituitary growth hormone–hepatic insulin-like growth factor I (IGF-I) axis and direct inhibition of autocrine/paracrine production of IGF-I and -II in tumors. However, other evidence points to a direct effect of GHRH antagonists on tumor growth that may not implicate IGFs, although an involvement of GHRH in the proliferation of cancer cells has not yet been established. In the present study we investigated whether GHRH can function as an autocrine/paracrine growth factor in small cell lung carcinoma (SCLC). H-69 and H-510A SCLC lines cultured in vitro express mRNA for GHRH, which apparently is translated into peptide GHRH and then secreted by the cells, as shown by the detection of GHRH-like immunoreactivity in conditioned media from the cells cultured in vitro. In addition, the levels of GHRH-like immunoreactivity in serum from nude mice bearing H-69 xenografts were higher than in tumor-free mice. GHRH(1–29)NH2 stimulated the proliferation of H-69 and H-510A SCLCs in vitro, and GHRH antagonist JV-1–36 inhibited it. JV-1–36 administered s.c. into nude mice bearing xenografts of H-69 SCLC reduced significantly (P < 0.05) tumor volume and weight, after 31 days of therapy, as compared with controls. Collectively, our results suggest that GHRH can function as an autocrine growth factor in SCLCs. Treatment with antagonistic analogs of GHRH may offer a new approach to the treatment of SCLC and other cancers.